题面
题解
第一问:
设\(f[i]\)表示\(i\)步操作后,平均深度期望
\(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+\frac{2}{i}\)
第二问就比较难受了:
\(E(x)=∑_{i=1}^{x}P\)
随机变量\(x\)的期望为对于所有\(i\),\(i≤x\)的概率之和
我们设\(f[i][j]\)表示\(i\)步后,树的深度\(>=j\)的概率
我们每次新建一个根,然后枚举左右子树分配节点情况
\(f[i][j] = \frac{1}{i-1}\sum_{k=1}^{i-1}(f[k][j-1]*1+f[i-k][j-1]*1-f[k][j-1]*f[i-k][j-1])\)
然后
\(Ans = \sum_{i=1}^{n-1}f[n][i]\)
Code
#include#define LL long long#define RG registerusing namespace std;template inline void read(T &x) { x = 0; RG char c = getchar(); bool f = 0; while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1; while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar(); x = f ? -x : x; return ;}template inline void write(T x) { if (!x) {putchar(48);return ;} if (x < 0) x = -x, putchar('-'); int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10; for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;}const int N = 110;int q, n;namespace cpp1 { double f[N]; void main() { for (int i = 2; i <= n; i++) f[i] = f[i - 1] + 2.0 / i; printf("%lf\n", f[n]); return ; }}namespace cpp2 { double f[N][N]; void main() { for (int i = 1; i <= n; i++) f[i][0] = 1; for (int i = 2; i <= n; i++) for (int j = 1; j < n; j++) { for (int k = 1; k < i; k++) f[i][j] += f[k][j - 1] + f[i - k][j - 1] - f[k][j - 1] * f[i - k][j - 1]; f[i][j] /= (i - 1); } double ans = 0; for (int i = 1; i < n; i++) ans += f[n][i]; printf("%lf\n", ans); } }int main() { read(q), read(n); if (q == 1) cpp1 :: main(); else cpp2 :: main(); return 0;}